
Prompt
Engineering
Author: Lee Boonstra

Prompt Engineering

February 2025 2

Acknowledgements

Content contributors

Michael Sherman

Yuan Cao

Erick Armbrust

Anant Nawalgaria

Antonio Gulli

Simone Cammel

Curators and Editors

Antonio Gulli

Anant Nawalgaria

Grace Mollison

Technical Writer

Joey Haymaker

Designer

Michael Lanning

Introduction 6

Prompt engineering 7

LLM oupu configuaion 8

Output length 8

Sampling controls 9

Temperature 9

Top-K and top-P 10

Puting i all ogehe 11

Prompting techniques 13

General prompting / zero shot 13

One-shot & few-shot 15

System, contextual and role prompting 18

System prompting 19

Role prompting 21

Contextual prompting 23

Table of contents

Step-back prompting 25

Chain of Thought (CoT) 29

Self-consistency 32

Tree of Thoughts (ToT) 36

ReAct (reason & act) 37

Automatic Prompt Engineering 40

Code prompting 42

Prompts for writing code 42

Prompts for explaining code 44

Prompts for translating code 46

Prompts for debugging and reviewing code 48

What about multimodal prompting? 54

Bes Pacices 54

Provide examples 54

Design with simplicity 55

Be specic abou he oupu 56

Use Instructions over Constraints 56

Control the max token length 58

Use variables in prompts 58

Experiment with input formats and writing styles 59

Fo ew-sho pomping wih classicaion asks, mix up he classes 59

Adapt to model updates 60

Experiment with output formats 60

JSON Repair 61

Working with Schemas 62

Experiment together with other prompt engineers 63

CoT Best practices 64

Documen he vaious pomp atemps 64

Summay 66

Endnotes 68

Prompt Engineering

February 2025 6

Introduction
When thinking about a large language model input and output, a text prompt (sometimes

accompanied by other modalities such as image prompts) is the input the model uses

o pedic a specic oupu. You don’ need o be a daa scienis o a machine leaning

enginee – eveyone can wie a pomp. Howeve, cafing he mos eecive pomp can be

complicaed. Many aspecs o you pomp aec is ecacy: he model you use, he model’s

aining daa, he model conguaions, you wod-choice, syle and one, sucue, and

conex all mate. Theeoe, pomp engineeing is an ieaive pocess. Inadequae pomps

can lead o ambiguous, inaccuae esponses, and can hinde he model’s abiliy o povide

meaningul oupu.

You don’t need to be a data
scientist or a machine learning
engineer – everyone can write
a prompt.

Prompt Engineering

February 2025 7

When you chat with the Gemini chatbot,1 you basically write prompts, however this

whiepape ocuses on wiing pomps o he Gemini model wihin Verex AI o by using

he API, because by pomping he model diecly you will have access o he conguaion

such as empeaue ec.

This whiepape discusses pomp engineeing in deail. We will look ino he vaious

pomping echniques o help you geting sared and shae ips and bes pacices o

become a pomping exper. We will also discuss some o he challenges you can ace

while cafing pomps.

Prompt engineering
Remembe how an LLM woks; i’s a pedicion engine. The model akes sequenial ex as

an input and then predicts what the following token should be, based on the data it was

ained on. The LLM is opeaionalized o do his ove and ove again, adding he peviously

pediced oken o he end o he sequenial ex o pedicing he ollowing oken. The nex

oken pedicion is based on he elaionship beween wha’s in he pevious okens and wha

he LLM has seen duing is aining.

When you wie a pomp, you ae atemping o se up he LLM o pedic he igh sequence

o okens. Pomp engineeing is he pocess o designing high-qualiy pomps ha guide

LLMs o poduce accuae oupus. This pocess involves inkeing o nd he bes pomp,

opimizing pomp lengh, and evaluaing a pomp’s wiing syle and sucue in elaion

o he ask. In he conex o naual language pocessing and LLMs, a pomp is an inpu

povided o he model o geneae a esponse o pedicion.

Prompt Engineering

February 2025 8

These prompts can be used to achieve various kinds of understanding and generation

asks such as ex summaizaion, inomaion exacion, quesion and answeing, ex

classicaion, language o code anslaion, code geneaion, and code documenaion

o easoning.

Please eel ee o ee o Google’s pomping guides2,3 wih simple and eecive

pomping examples.

When pomp engineeing, you will sar by choosing a model. Pomps migh need o be

opimized o you specic model, egadless o whehe you use Gemini language models in

Verex AI, GPT, Claude, o an open souce model like Gemma o LLaMA.

Besides he pomp, you will also need o inke wih he vaious conguaions o a LLM.

LLM oupu configuraion
Once you choose you model you will need o gue ou he model conguaion. Mos LLMs

come wih vaious conguaion opions ha conol he LLM’s oupu. Eecive pomp

engineeing equies seting hese conguaions opimally o you ask.

Output length

An imporan conguaion seting is he numbe o okens o geneae in a esponse.

Geneaing moe okens equies moe compuaion om he LLM, leading o highe enegy

consumpion, poenially slowe esponse imes, and highe coss.

Prompt Engineering

February 2025 9

Reducing he oupu lengh o he LLM doesn’ cause he LLM o become moe sylisically

or textually succinct in the output it creates, it just causes the LLM to stop predicting more

okens once he limi is eached. I you needs equie a shor oupu lengh, you’ll also

possibly need o enginee you pomp o accommodae.

Oupu lengh esicion is especially imporan o some LLM pomping echniques, like

ReAc, whee he LLM will keep emiting useless okens afe he esponse you wan.

Be awae, geneaing moe okens equies moe compuaion om he LLM, leading

to higher energy consumption and potentially slower response times, which leads to

highe coss.

Sampling controls

LLMs do no omally pedic a single oken. Rahe, LLMs pedic pobabiliies o wha he

nex oken could be, wih each oken in he LLM’s vocabulay geting a pobabiliy. Those

oken pobabiliies ae hen sampled o deemine wha he nex poduced oken will be.

Tempeaue, op-K, and op-P ae he mos common conguaion setings ha deemine

how pediced oken pobabiliies ae pocessed o choose a single oupu oken.

Temperature

Tempeaue conols he degee o andomness in oken selecion. Lowe empeaues

are good for prompts that expect a more deterministic response, while higher temperatures

can lead o moe divese o unexpeced esuls. A empeaue o 0 (geedy decoding) is

Prompt Engineering

February 2025 10

deeminisic: he highes pobabiliy oken is always seleced (hough noe ha i wo okens

have the same highest predicted probability, depending on how tiebreaking is implemented

you may no always ge he same oupu wih empeaue 0).

Tempeaues close o he max end o ceae moe andom oupu. And as empeaue ges

highe and highe, all okens become equally likely o be he nex pediced oken.

The Gemini empeaue conol can be undesood in a simila way o he sofmax uncion

used in machine leaning. A low empeaue seting mios a low sofmax empeaue (T),

emphasizing a single, peeed empeaue wih high cerainy. A highe Gemini empeaue

seting is like a high sofmax empeaue, making a wide ange o empeaues aound

he seleced seting moe accepable. This inceased uncerainy accommodaes scenaios

where a rigid, precise temperature may not be essential like for example when experimenting

wih ceaive oupus.

Top-K and top-P

Top-K and top-P (also known as nucleus sampling)4 ae wo sampling setings used in LLMs

o esic he pediced nex oken o come om okens wih he op pediced pobabiliies.

Like empeaue, hese sampling setings conol he andomness and divesiy o

geneaed ex.

• Top-K sampling selecs he op K mos likely okens om he model’s pediced

disibuion. The highe op-K, he moe ceaive and vaied he model’s oupu; he

lowe op-K, he moe esive and acual he model’s oupu. A op-K o 1 is equivalen o

geedy decoding.

Prompt Engineering

February 2025 11

• Top-P sampling selects the top tokens whose cumulative probability does not exceed

a cerain value (P). Values o P ange om 0 (geedy decoding) o 1 (all okens in he

LLM’s vocabulay).

The best way to choose between top-K and top-P is to experiment with both methods (or

boh ogehe) and see which one poduces he esuls you ae looking o.

Puting i all ogeher

Choosing between top-K, top-P, temperature, and the number of tokens to generate,

depends on he specic applicaion and desied oucome, and he setings all impac one

anohe. I’s also imporan o make sue you undesand how you chosen model combines

he dieen sampling setings ogehe.

I empeaue, op-K, and op-P ae all available (as in Verex Sudio), okens ha mee

both the top-K and top-P criteria are candidates for the next predicted token, and then

empeaue is applied o sample om he okens ha passed he op-K and op-P cieia. I

only op-K o op-P is available, he behavio is he same bu only he one op-K o P seting

is used.

If temperature is not available, whatever tokens meet the top-K and/or top-P criteria are then

andomly seleced om o poduce a single nex pediced oken.

A exeme setings o one sampling conguaion value, ha one sampling seting eihe

cancels ou ohe conguaion setings o becomes ielevan.

Prompt Engineering

February 2025 12

• If you set temperature to 0, top-K and top-P become irrelevant–the most probable

oken becomes he nex oken pediced. I you se empeaue exemely high (above

1–generally into the 10s), temperature becomes irrelevant and whatever tokens make

it through the top-K and/or top-P criteria are then randomly sampled to choose a next

pediced oken.

• I you se op-K o 1, empeaue and op-P become ielevan. Only one oken passes he

op-K cieia, and ha oken is he nex pediced oken. I you se op-K exemely high,

like o he size o he LLM’s vocabulay, any oken wih a nonzeo pobabiliy o being he

nex oken will mee he op-K cieia and none ae seleced ou.

• If you set top-P to 0 (or a very small value), most LLM sampling implementations will then

only consider the most probable token to meet the top-P criteria, making temperature and

op-K ielevan. I you se op-P o 1, any oken wih a nonzeo pobabiliy o being he

nex oken will mee he op-P cieia, and none ae seleced ou.

As a geneal saring poin, a empeaue o .2, op-P o .5, and op-K o 30 will give you

elaively coheen esuls ha can be ceaive bu no excessively so. I you wan especially

ceaive esuls, y saring wih a empeaue o ., op-P o ., and op-K o 40. And i you

wan less ceaive esuls, y saring wih a empeaue o .1, op-P o ., and op-K o 20.

Finally, i you ask always has a single coec answe (e.g., answeing a mah poblem), sar

wih a empeaue o 0.

NOTE:With more freedom (higher temperature, top-K, top-P, and output tokens), the LLM

migh geneae ex ha is less elevan.

WARNING: Have you eve seen a esponse ending wih a lage amoun o lle wods? This

is also known as the "repetition loop bug", which is a common issue in Large Language

Models whee he model ges suck in a cycle, epeaedly geneaing he same (lle) wod,

phase, o senence sucue, ofen exacebaed by inappopiae empeaue and op-k/

Prompt Engineering

February 2025 13

op-p setings. This can occu a boh low and high empeaue setings, hough o dieen

easons. A low empeaues, he model becomes ovely deeminisic, sicking igidly o he

highest probability path, which can lead to a loop if that path revisits previously generated

ex. Convesely, a high empeaues, he model's oupu becomes excessively andom,

increasing the probability that a randomly chosen word or phrase will, by chance, lead back

o a pio sae, ceaing a loop due o he vas numbe o available opions. In boh cases,

he model's sampling pocess ges "suck," esuling in monoonous and unhelpul oupu

unil he oupu window is lled. Solving his ofen equies caeul inkeing wih empeaue

and op-k/op-p values o nd he opimal balance beween deeminism and andomness.

Prompting techniques
LLMs are tuned to follow instructions and are trained on large amounts of data so they can

undesand a pomp and geneae an answe. Bu LLMs aen’ peec; he cleae you

pomp ex, he bete i is o he LLM o pedic he nex likely ex. Addiionally, specic

echniques ha ake advanage o how LLMs ae ained and how LLMs wok will help you ge

the relevant results from LLMs

Now ha we undesand wha pomp engineeing is and wha i akes, le’s dive ino some

examples o he mos imporan pomping echniques.

General prompting / zero shot

A zero-shot5 pomp is he simples ype o pomp. I only povides a descipion o a ask

and some ex o he LLM o ge sared wih. This inpu could be anyhing: a quesion, a

sar o a soy, o insucions. The name zeo-sho sands o ’no examples’.

Prompt Engineering

February 2025 14

Le’s use Verex AI Sudio (o Language) in Verex AI,6 which provides a playground to test

pomps. In Table 1, you will see an example zeo-sho pomp o classiy movie eviews.

The able oma as used below is a gea way o documening pomps. You pomps will

likely go hough many ieaions beoe hey end up in a codebase, so i’s imporan o keep

ack o you pomp engineeing wok in a disciplined, sucued way. Moe on his able

oma, he imporance o acking pomp engineeing wok, and he pomp developmen

process is in the Best Practices section later in this chapter (“Document the various prompt

atemps”).

The model temperature should be set to a low number, since no creativity is needed, and we

use he gemini-po deaul op-K and op-P values, which eecively disable boh setings

(see ‘LLM Oupu Conguaion’ above). Pay atenion o he geneaed oupu. The wods

disturbing and masterpiece should make he pedicion a litle moe complicaed, as boh

wods ae used in he same senence.

Prompt Engineering

February 2025 15

Name 1_1_movie_classicaion

Goal Classiy movie eviews as posiive, neual o negaive.

Model gemini-pro

Tempeaue 0.1 Token Limit 5

Top-K N/A Top-P 1

Prompt Classify movie reviews as POSITIVE, NEUTRAL or NEGATIVE.
Review: "Her" is a disturbing study revealing the direction
humanity is headed if AI is allowed to keep evolving,
unchecked. I wish there were more movies like this masterpiece.
Sentiment:

Output POSITIVE

Table 1. An example o zeo-sho pomping

When zeo-sho doesn’ wok, you can povide demonsaions o examples in he pomp,

which leads o “one-sho” and “ew-sho” pomping. Geneal pomping / zeo sho

One-shot & few-shot

When ceaing pomps o AI models, i is helpul o povide examples. These examples can

help he model undesand wha you ae asking o. Examples ae especially useul when you

wan o see he model o a cerain oupu sucue o paten.

A one-shot prompt, provides a single example, hence he name one-sho. The idea is he

model has an example i can imiae o bes complee he ask.

A few-shot prompt 7 provides multiple examples o he model. This appoach shows he

model a paten ha i needs o ollow. The idea is simila o one-sho, bu muliple examples

o he desied paten inceases he chance he model ollows he paten.

Prompt Engineering

February 2025 16

The number of examples you need for few-shot prompting depends on a few factors,

including he complexiy o he ask, he qualiy o he examples, and he capabiliies o he

geneaive AI (gen AI) model you ae using. As a geneal ule o humb, you should use a

leas hee o ve examples o ew-sho pomping. Howeve, you may need o use moe

examples for more complex tasks, or you may need to use fewer due to the input length

limiaion o you model.

Table 2 shows a ew-sho pomp example, le’s use he same gemini-po model

conguaion setings as beoe, ohe han inceasing he oken limi o accommodae he

need o a longe esponse.

Goal Parse pizza orders to JSON

Model gemini-pro

Tempeaue 0.1 Token Limit 250

Top-K N/A Top-P 1

Prompt Parse a customer's pizza order into valid JSON:

EXAMPLE:
I want a small pizza with cheese, tomato sauce, and pepperoni.
JSON Response:
`̀ `
{
"size": "small",
"type": "normal",
"ingredients": [["cheese", "tomato sauce", "peperoni"]]
}
`̀ `

Continues next page...

Prompt Engineering

February 2025 17

Prompt EXAMPLE:
Can I get a large pizza with tomato sauce, basil and mozzarella

{
"size": "large",
"type": "normal",
"ingredients": [["tomato sauce", "bazel", "mozzarella"]]
}

Now, I would like a large pizza, with the first half cheese and
mozzarella. And the other tomato sauce, ham and pineapple.

JSON Response:

Output `̀ `
{
"size": "large",
"type": "half-half",
"ingredients": [["cheese", "mozzarella"], ["tomato sauce",
"ham", "pineapple"]]
}
`̀ `

Table 2. An example o ew-sho pomping

When you choose examples for your prompt, use examples that are relevant to the task you

wan o peom. The examples should be divese, o high qualiy, and well witen. One small

misake can conuse he model and will esul in undesied oupu.

I you ae ying o geneae oupu ha is obus o a vaiey o inpus, hen i is imporan o

include edge cases in you examples. Edge cases ae inpus ha ae unusual o unexpeced,

bu ha he model should sill be able o handle.

Prompt Engineering

February 2025 18

System, contextual and role prompting

Sysem, conexual and ole pomping ae all echniques used o guide how LLMs geneae

ex, bu hey ocus on dieen aspecs:

• System prompting ses he oveall conex and pupose o he language model. I

denes he ‘big picue’ o wha he model should be doing, like anslaing a language,

classiying a eview ec.

• Contextual prompting povides specic deails o backgound inomaion elevan o

he cuen convesaion o ask. I helps he model o undesand he nuances o wha’s

being asked and ailo he esponse accodingly.

• Role prompting assigns a specic chaace o ideniy o he language model o adop.

This helps the model generate responses that are consistent with the assigned role and its

associaed knowledge and behavio.

Thee can be consideable ovelap beween sysem, conexual, and ole pomping. E.g. a

pomp ha assigns a ole o he sysem, can also have a conex.

Howeve, each ype o pomp seves a slighly dieen pimay pupose:

• Sysem pomp: Denes he model’s undamenal capabiliies and oveaching pupose.

• Conexual pomp: Povides immediae, ask-specic inomaion o guide he esponse.

I’s highly specic o he cuen ask o inpu, which is dynamic.

• Role pomp: Fames he model’s oupu syle and voice. I adds a laye o speciciy

and pesonaliy.

Prompt Engineering

February 2025 19

Distinguishing between system, contextual, and role prompts provides a framework for

designing pomps wih clea inen, allowing o exible combinaions and making i easie o

analyze how each pomp ype inuences he language model’s oupu.

Le’s dive ino hese hee dieen kinds o pomps.

System prompting

Table 3 contains a system prompt, where I specify additional information on how to return the

oupu. I inceased he empeaue o ge a highe ceaiviy level, and I specied a highe

oken limi. Howeve, because o my clea insucion on how o eun he oupu he model

didn’ eun exa ex.

Goal Classiy movie eviews as posiive, neual o negaive.

Model gemini-pro

Tempeaue 1 Token Limit 5

Top-K 40 Top-P 0.8

Prompt Classify movie reviews as positive, neutral or negative. Only
return the label in uppercase.
Review: "Her" is a disturbing study revealing the direction
humanity is headed if AI is allowed to keep evolving,
unchecked. It's so disturbing I couldn't watch it.
Sentiment:

Output NEGATIVE

Table 3. An example o sysem pomping

Sysem pomps can be useul o geneaing oupu ha mees specic equiemens. The

name ‘sysem pomp’ acually sands o ‘poviding an addiional ask o he sysem’. Fo

example, you could use a system prompt to generate a code snippet that is compatible with

a specic pogamming language, o you could use a sysem pomp o eun a cerain

sucue. Have a look ino Table 4, whee I eun he oupu in JSON oma.

Prompt Engineering

February 2025 20

Goal Classiy movie eviews as posiive, neual o negaive, eun JSON.

Model gemini-pro

Tempeaue 1 Token Limit 1024

Top-K 40 Top-P 0.8

Prompt Classify movie reviews as positive, neutral or negative. Return
valid JSON:

Review: "Her" is a disturbing study revealing the direction
humanity is headed if AI is allowed to keep evolving,
unchecked. It's so disturbing I couldn't watch it.

Schema:
`̀ `
MOVIE:
{
"sentiment": String "POSITIVE" | "NEGATIVE" | "NEUTRAL",
"name": String
}
MOVIE REVIEWS:
{
"movie_reviews": [MOVIE]
}
`̀ `
JSON Response:

Output `̀ `
{

"movie_reviews": [
{

"sentiment": "NEGATIVE",
"name": "Her"

}
]

}
`̀ `

Table 4. An example o sysem pomping wih JSON oma

Prompt Engineering

February 2025 21

Thee ae some benes in euning JSON objecs om a pomp ha exacs daa. In

a eal-wold applicaion I don’ need o manually ceae his JSON oma, I can aleady

eun he daa in a sored ode (vey handy when woking wih daeime objecs), bu mos

imporanly, by pomping o a JSON oma i oces he model o ceae a sucue and

limi hallucinaions.

Sysem pomps can also be eally useul o saey and oxiciy. To conol he oupu, simply

add an addiional line o you pomp like: ‘You should be especul in you answe.’.

Role prompting

Role pomping is a echnique in pomp engineeing ha involves assigning a specic ole o

he gen AI model. This can help he model o geneae moe elevan and inomaive oupu,

as he model can caf is esponses o he specic ole ha i has been assigned.

Fo example, you could ole pomp a gen AI model o be a book edio, a kindegaren

eache, o a moivaional speake. Once he model has been assigned a ole, you can hen

give i pomps ha ae specic o ha ole. Fo example, you could pomp a eache o

ceae a lesson plan ha hey can hen eview. Have a look ino Table 5, whee he model

akes he ole o a avel guide.

Prompt Engineering

February 2025 22

Goal Act as travel guide and provide 3 travel suggestions

Model gemini-pro

Tempeaue 1 Token Limit 1024

Top-K 40 Top-P 0.8

Prompt I want you to act as a travel guide. I will write to you
about my location and you will suggest 3 places to visit near
me. In some cases, I will also give you the type of places I
will visit.
My suggestion: "I am in Amsterdam and I want to visit
only museums."
Travel Suggestions:

Output 1. Rijksmuseum: Wold-enowned museum, known o Duch masepieces
like Remband’s “The NighWach.” Don’ miss he incedible collecion o
painings and ariacs showcasing Duch ar and hisoy.

2. Van Gogh Museum: Immese yousel in he capivaing woks o Vincen
van Gogh. The museum houses he lages collecion o his painings and
dawings, including “The Say Nigh” and “Sunowes.”

3. Sedelijk Museum Amsedam: Discove moden and conempoay ar
om aound he wold. The museum’s collecion includes woks by Picasso,
Kandinsky, and Rieveld, housed in a siking moden building.

Table 5. An example o ole pomping

The above example shows an example o aking he ole o a avel agen. When you

would change the role to a teacher of geography, you would notice that you will receive a

dieen esponse.

Dening a ole pespecive o an AI model gives i a bluepin o he one, syle, and ocused

experise you’e looking o o impove he qualiy, elevance, and eeciveness o you

oupu.

Prompt Engineering

February 2025 23

Hee ae some syles you can choose om which I nd eecive:

Cononaional, Descipive, Diec, Fomal, Humoous, Inuenial, Inomal,

Inspirational, Persuasive

Le’s change ou pomp in Table 6 o include a humoous and inspiaional syle.

Prompt I want you to act as a travel guide. I will write to you about
my location and you will suggest 3 places to visit near me in
a humorous style.

My suggestion: "I am in Manhattan."
Travel Suggestions:

Output 1. Behold he Empie Sae o Mind: Ascend o he dizzying heighs o he Empie
Sae Building and bask in he gloy o Manhatan's skyline. Pepae o eel like
King Kong aop he Big Apple, minus he gian ape-sized banana.

2. Ge Arsy-Farsy a MoMA: Unleash you inne ar acionado a he Museum
o Moden Ar (MoMA). Gaze upon masepieces ha will boggle you
mind and make you quesion whehe you sick-gue dawings have any
arisic mei.

3. Shop ‘Til You Dop on Fifh Avenue: Indulge in some eail heapy on he
iconic Fifh Avenue. Bace yousel o sicke shock as you window-shop (o
acually shop) a designe bouiques ha will make you walle cy. Bu hey,
you’e in Manhatan, so you migh as well embace he abulousness!

Table 6. An example o ole pomping wih a humoous one and syle

Contextual prompting

By providing contextual prompts, you can help ensure that your AI interactions are as

seamless and ecien as possible. The model will be able o moe quickly undesand you

eques and be able o geneae moe accuae and elevan esponses, as you can see in he

example o Table 7.

Prompt Engineering

February 2025 24

Goal Sugges aricles o a blog abou eo games

Model gemini-pro

Tempeaue 1 Token Limit 1024

Top-K 40 Top-P 0.8

Prompt Context: You are writing for a blog about retro 80's arcade
video games.

Suggest 3 topics to write an article about with a few lines of
description of what this article should contain.

Output 1. **The Evoluion o Acade Cabine Design:**
This aricle would exploe he evoluion o acade cabine designs, om he
early wood and metal cabinets of the 1970s to the sleek, neon-lit designs of
he 180s and beyond.

2. **Blas Fom The Pas: Iconic Acade Games o The 80’s:**
- This aricle would eaue a glimpse ino he hisoy, impac, and legacy
o some o he mos iconic and inuenial acade games o he 180s,
highlighing hei innovaions, popula mechanics, and enduing cham.

3. **The Rise and Reo Revival o Pixel Ar:**
- This aricle would delve ino he evoluion o pixel ar as a dening visual
syle o ealy acade games, acing is oos, exploing is echniques, and
discussing he esugence o pixel ar in moden games and digial ar.

Table 7. An example o conexual pomping

Prompt Engineering

February 2025 25

Step-back prompting

Step-back8 pomping is a echnique o impoving he peomance by pomping he LLM

o s conside a geneal quesion elaed o he specic ask a hand, and hen eeding he

answe o ha geneal quesion ino a subsequen pomp o he specic ask. This ‘sep

back’ allows he LLM o acivae elevan backgound knowledge and easoning pocesses

beoe atemping o solve he specic poblem.

By considering the broader and underlying principles, LLMs can generate more accurate and

insighul esponses. Sep-back pomping encouages LLMs o hink ciically and apply hei

knowledge in new and ceaive ways. I changes he nal pomp doing he ask by uilizing

moe knowledge in he LLM’s paamees han would ohewise come ino play when he LLM

is pomped diecly.

It can help to mitigate biases in LLM responses, by focusing on general principles instead of

specic deails, sep-back pomping.

Le’s have a look ino hese examples o undesand how sep-back pomping can impove

he esuls. Le’s s eview a adiional pomp (Table 8) beoe we compae i o a sep

back pomp (Table ):

Prompt Engineering

February 2025 26

Goal Wie a soyline o a level o a s-peson shooe video game.

Model gemini-pro

Tempeaue 1 Token Limit 1024

Top-K 40 Top-P 0.8

Prompt Write a one paragraph storyline for a new level of a first-
person shooter video game that is challenging and engaging.

Output The level begins wih he playe’s squad being ambushed in a dense uban aea
by a elenless enemy acion. Playes mus gh hei way hough a maze o
back alleys and dilapidated buildings, utilizing stealth and precision to eliminate
enemy oces and avoid deecion. The playe mus use hei envionmen o hei
advanage, seting aps, uilizing cove, and making calculaed moves o suvive.
Along the way, they uncover intel suggesting the enemy is planning a devastating
atack, and he playe mus ace agains ime o gahe evidence and elay i back
o hei headquares beoe he enemy can cay ou hei plans.

Table 8. A adiional pomp beoe we compae i wih a sep back pomp

When you set the temperature to 1, you might end up with all kinds of creative writings for a

soyline, bu i’s also quie andom and geneic. So le’s ake a sep back:

Prompt Engineering

February 2025 27

Prompt Based on popular first-person shooter action games, what are
5 fictional key settings that contribute to a challenging and
engaging level storyline in a first-person shooter video game?

Output 1. **Abandoned Miliay Base**: A spawling, pos-apocalypic miliay complex
crawling with mutated soldiers and rogue robots, ideal for challenging
eam comba.

2. **Cybepunk Ciy**: A neon-li, uuisic uban envionmen wih oweing
skyscrapers and dense alleyways, featuring cybernetically enhanced enemies
and hacking mechanics.

3. **Alien Spaceship**: A vas alien vessel sanded on Earh, wih eeie
coidos, zeo-gaviy secions, and exaeesial ceaues o encoune.

4. **Zombie-Inesed Town**: A desolae own oveun by hodes o aggessive
zombies, eauing inense close-quares comba and puzzle-solving o nd
sae passage.

5. **Undewae Reseach Faciliy**: A deep-sea laboaoy ooded wih wae,
lled wih muaed aquaic ceaues, and equiing sealh and undewae
exploaion skills o suvive.

Table 9. An example o pomping o sel consisency

Yeah hose opics seem like a good  o a s-peson video game. Le’s go back o he

original prompt, but this time we include the answer of the step back as context and see what

i will eun.

Prompt Engineering

February 2025 28

Prompt Context: 5 engaging themes for a first person shooter video game:

1. **Abandoned Military Base**: A sprawling, post-apocalyptic
military complex crawling with mutated soldiers and rogue
robots, ideal for challenging firearm combat.

2. **Cyberpunk City**: A neon-lit, futuristic urban environment
with towering skyscrapers and dense alleyways, featuring
cybernetically enhanced enemies and hacking mechanics.

3. **Alien Spaceship**: A vast alien vessel stranded on
Earth, with eerie corridors, zero-gravity sections, and
extraterrestrial creatures to encounter.

4. **Zombie-Infested Town**: A desolate town overrun by hordes of
aggressive zombies, featuring intense close-quarters combat and
puzzle-solving to find safe passage.

5. **Underwater Research Facility**: A deep-sea laboratory flooded
with water, filled with mutated aquatic creatures, and requiring
stealth and underwater exploration skills to survive.

Take one of the themes and write a one paragraph storyline
for a new level of a first-person shooter video game that is
challenging and engaging.

Output In he hear o a muky abyss, lies a dilapidaed undewae eseach aciliy,
sanding as a esamen o human ambiion and is disasous consequences.
Shrouded in darkness, pulsating with the hum of malfunctioning machinery, and
haunted by the echoes of drowned souls, the facility is now a breeding ground for
a nighmae bone om he deep sea. The playe, an elie maine equipped wih
advanced diving gear and experimental weaponry, is tasked with venturing into
his aquaic ealm o eo. Amed wih esilience and esouceulness, hey mus
navigate treacherous corridors, solve cryptic puzzles, and confront gruesome sea
monsosiies ha luk in he dephs. Fom gappling wih he cushing pessue
o he deep sea o ousmaring cunning aquaic pedaos, evey momen in his
unchared undewold ess he limis o human enduance and couage.

Table 10. An example o pomping o sel consisency

Tha looks like an ineesing video game! By using sep back pomping echniques you can

incease he accuacy o you pomps.

Prompt Engineering

February 2025 29

Chain of Thought (CoT)

Chain of Thought (CoT) 9 pomping is a echnique o impoving he easoning capabiliies

of LLMs by generating intermediate reasoning steps. This helps he LLM geneae moe

accuae answes. You can combine i wih ew-sho pomping o ge bete esuls on moe

complex asks ha equie easoning beoe esponding as i’s a challenge wih a zeo-sho

chain o hough.

CoT has a lo o advanages. Fis o all, i’s low-eor while being vey eecive and woks

well wih o-he-shel LLMs (so no need o neune). You also ge inepeabiliy wih CoT

pomping, as you can lean om he LLM’s esponses and see he easoning seps ha wee

ollowed. I hee’s a maluncion, you will be able o ideniy i. Chain o hough appeas

o impove obusness when moving beween dieen LLM vesions. Which means he

peomance o you pomp should dif less beween dieen LLMs han i you pomp

does no use easoning chains. O couse hee ae also disadvanages, bu hey ae

somewha inuiive.

The LLM response includes the chain of thought reasoning, which means more output

okens, which means pedicions cos moe money and ake longe.

To explain he ollowing example in Table 11, le’s s y o ceae a pomp ha is no using

CoT pomping o showcase he aws o a lage language model.

Prompt When I was 3 years old, my partner was 3 times my age. Now, I
am 20 years old. How old is my partner?

Output 63 years old

Table 11. An example o a pomp which is ying o solve a mahemaical poblem

Prompt Engineering

February 2025 30

Yikes. Tha’s obviously he wong answe. As a mate o ac, LLMs ofen suggle wih

mathematical tasks and can provide incorrect answers – even for a task as simple as

muliplying wo numbes. This is because hey ae ained on lage volumes o ex and mah

may equie a dieen appoach. So le’s see i inemediae easoning seps will impove

he oupu.

Prompt When I was 3 years old, my partner was 3 times my age. Now,
I am 20 years old. How old is my partner? Let's think step
by step.

Output 1. Le’s assume my cuen age is “x” yeas.

2. When I was 3 yeas old, my age was 3 yeas.

3. My parne’s age a ha ime was 3 imes my age, which means my parne’s
age was 3 * 3 =  yeas.

4. Now, I am 20 years old, which means my age has increased by 20 - 3 = 17
yeas since I was 3 yeas old.

5. Since my parne’s age was  yeas when I was 3 yeas old, and my age has
inceased by 17 yeas, my parne’s age mus have also inceased by 17 yeas.

6. Theeoe, my parne’s cuen age is  + 17 = 26 yeas.

So, my parne is 26 yeas old.

Table 12. An example o Chain o Though pomping

Aligh, now he nal answe is coec. Tha’s because we clealy insuced he LLM o

explain each sep insead o jus euning an answe. I’s ineesing o see ha he model

adds up he 17 inceased yeas. In my head I would ake he dieence o yeas beween my

parne and me and add hose up. (20+(-3)). Le’s help he model o hink a litle bi moe

like me.

Prompt Engineering

February 2025 31

Table 12 is an example o ‘zeo-sho’ Chain o hough. Chain o hough pomping can be

vey poweul when combined wih a single-sho o ew-sho, as wha you can see in Table 13:

Prompt Q: When my brother was 2 years old, I was double his age. Now
I am 40 years old. How old is my brother? Let's think step
by step.
A: When my brother was 2 years, I was 2 * 2 = 4 years old.
That's an age difference of 2 years and I am older. Now I am 40
years old, so my brother is 40 - 2 = 38 years old. The answer
is 38.
Q: When I was 3 years old, my partner was 3 times my age. Now,
I am 20 years old. How old is my partner? Let's think step
by step.
A:

Output When I was 3 yeas old, my parne was 3 * 3 =  yeas old. Tha’s an age
dieence o 6 yeas and my parne is olde. Now I am 20 yeas old, so my
parne is 20 + 6 = 26 yeas old. The answe is 26.

Table 13. An example o chain o hough pomping wih a single-sho

Chain o hough can be useul o vaious use-cases. Think o code geneaion, o beaking

down he eques ino a ew seps, and mapping hose o specic lines o code. O o

creating synthetic data when you have some kind of seed like “The product is called XYZ,

write a description guiding the model through the assumptions you would make based on

the product given title.” Geneally, any ask ha can be solved by ‘alking hough is a good

candidae o a chain o hough. I you can explain he seps o solve he poblem, y chain

o hough.

Please refer to the notebook10 hosed in he GoogleCloudPlaom Gihub eposioy which

will go ino urhe deail on CoT pomping:

Prompt Engineering

February 2025 32

In he bes pacices secion o his chape, we will lean some bes pacices specic o

Chain o hough pomping.

Self-consistency

While large language models have shown impressive success in various NLP tasks, their

abiliy o eason is ofen seen as a limiaion ha canno be ovecome solely by inceasing

model size. As we leaned in he pevious Chain o Though pomping secion, he model can

be pomped o geneae easoning seps like a human solving a poblem. Howeve CoT uses

a simple ‘geedy decoding’ saegy, limiing is eeciveness. Sel-consisency11 combines

sampling and majority voting to generate diverse reasoning paths and select the most

consisen answe. I impoves he accuacy and coheence o esponses geneaed by LLMs.

Self-consistency gives a pseudo-probability likelihood of an answer being correct, but

obviously has high coss.

I ollows he ollowing seps:

1. Geneaing divese easoning pahs: The LLM is povided wih he same pomp muliple

imes. A high empeaue seting encouages he model o geneae dieen easoning

pahs and pespecives on he poblem.

2. Exac he answe om each geneaed esponse.

3. Choose he mos common answe.

Le’s look ino an example o an email classicaion sysem, which classies an email as

IMPORTANT o NOT IMPORTANT. A zeo-sho chain o hough pomp will be sen o he LLM

muliple imes, o see i he esponses die afe each submi. Noice he iendly one, he

wod choice and he sacasm ha’s been used in he email. All his could ick he LLM.

Prompt Engineering

February 2025 33

Prompt EMAIL:
`̀ `
Hi,

I have seen you use Wordpress for your website. A great open
source content management system. I have used it in the past
too. It comes with lots of great user plugins. And it's pretty
easy to set up.

I did notice a bug in the contact form, which happens when
you select the name field. See the attached screenshot of me
entering text in the name field. Notice the JavaScript alert
box that I inv0k3d.

But for the rest it's a great website. I enjoy reading it. Feel
free to leave the bug in the website, because it gives me more
interesting things to read.

Cheers,

Harry the Hacker.
`̀ `

Classify the above email as IMPORTANT or NOT IMPORTANT. Let's
think step by step and explain why.

Continues next page...

Prompt Engineering

February 2025 34

Output
Atemp 1

Sep 1: Ideniy he pupose o he email.
The purpose of the email is to inform the recipient of a bug in the contact form
on hei websie. The sende also menions ha hey enjoy eading he websie
and ha hey ae leaving he bug in place o he ime being.

Sep 2: Assess he poenial impac o he bug.
The bug in he conac om could allow an atacke o execue abiay
JavaScip code on he websie. This could lead o he atacke being able o ake
conol o he websie, seal sensiive inomaion, o deace he websie.

Sep 3: Conside he cedibiliy o he sende.
The sende o he email claims o be a hacke named Hay. Howeve, hee is no
way o veiy he sende’s ideniy. I is possible ha he sende is a legiimae
hacker who is trying to help the recipient, but it is also possible that the sender
is a malicious actor who is trying to trick the recipient into clicking on a malicious
link o downloading a malicious le.

Conclusion: IMPORTANT
Based on the potential impact of the bug and the credibility of the sender,
he email should be classied as **IMPORTANT**. The ecipien should ake
immediae acion o x he bug and poec hei websie om atack.

Output
Atemp 2

Explanaion:

1. **Lack o ugency:** The email does no convey any sense o ugency o
ime-sensiiviy. I sars wih a casual geeing and pesens he inomaion
in a mate-o-ac one.

2. **Non-ciical bug epor:** The bug epored in he conac om is
descibed as ineesing bu no ciical. The email sende even suggess ha
he websie owne can leave he bug in place.

3. **Lack o pesonal impac:** The email does no indicae any diec o
pesonal impac on he websie owne. I simply menions ha he sende
enjoys eading he websie.

Continues next page...

Prompt Engineering

February 2025 35

Output
Atemp 2

4. **Absence o acion eques:** The email does no explicily eques any
acion om he websie owne. I does no ask o he bug o be xed o
povide any specic suggesions o impovemen.

5. **Sende’s inen:** The sende’s inenion seems o be moe ocused on
sharing an observation and expressing interest in the website rather than
aising a seious concen o equesing assisance.

Conclusion: NOT IMPORTANT

Output
Atemp 3

Sep 1: Ideniy he pupose o he email.
The purpose of the email is to inform the recipient of a bug in the contact form on
hei websie. The sende also menions ha hey enjoy eading he websie and
ha hey ae leaving he bug in place o he ime being.

Sep 2: Assess he poenial impac o he bug.
The bug in he conac om could allow an atacke o execue abiay
JavaScip code on he websie. This could lead o he atacke being able o ake
conol o he websie, seal sensiive inomaion, o deace he websie.

Sep 3: Conside he cedibiliy o he sende.
The sende o he email claims o be a hacke named Hay. Howeve, hee is no
way o veiy he sende’s ideniy. I is possible ha he sende is a legiimae
hacker who is trying to help the recipient, but it is also possible that the sender is
a malicious aco who is ying o exploi he bug o hei own gain.

Conclusion:
Based on he above acos, he email should be classied as **IMPORTANT**.
The bug in he conac om is a seious secuiy isk, and he sende’s cedibiliy
is unknown. The ecipien should ake immediae acion o x he bug and
i i  h d ’ l i

Table 14. An example o pomping o sel consisency

You can use he above pomp and y o see i i euns a consisen classicaion.

Depending on he model ha you ae using and he empeaue conguaion, i migh

eun “IMPORTANT” o “NOT IMPORTANT”.

Prompt Engineering

February 2025 36

By generating many Chains of Thoughts, and taking the most commonly occurring answer

(“IMPORTANT”), we can ge a moe consisenly coec answe om he LLM.

This example shows how self-consistency prompting can be used to improve the accuracy

o an LLM’s esponse by consideing muliple pespecives and selecing he mos

consisen answe.

Tree of Thoughts (ToT)

Now ha we ae amilia wih chain o hough and sel-consisency pomping, le’s eview

Tee o Thoughs (ToT).12 It generalizes the concept of CoT prompting because it allows LLMs

o exploe muliple dieen easoning pahs simulaneously, ahe han jus ollowing a

single linea chain o hough. This is depiced in Figue 1.

Figue 1. A visualizaion o chain o hough pomping on he lef vesus. Tee o Thoughs pomping on
the right

Prompt Engineering

February 2025 37

This appoach makes ToT pariculaly well-suied o complex asks ha equie exploaion. I

works by maintaining a tree of thoughts, where each thought represents a coherent language

sequence ha seves as an inemediae sep owad solving a poblem. The model can hen

exploe dieen easoning pahs by banching ou om dieen nodes in he ee.

Thee’s a gea noebook, which goes ino a bi moe deail showing The Tee o Though

(ToT) which is based on he pape ‘Lage Language Model Guided Tee-o-Though’.9

ReAct (reason & act)

Reason and act (ReAct) [10]13 prompting is a paradigm for enabling LLMs to solve complex

tasks using natural language reasoning combined with external tools (search, code

inepee ec.) allowing he LLM o peom cerain acions, such as ineacing wih exenal

APIs o eieve inomaion which is a s sep owads agen modeling.

ReAct mimics how humans operate in the real world, as we reason verbally and can

ake acions o gain inomaion. ReAc peoms well agains ohe pomp engineeing

appoaches in a vaiey o domains.

ReAc pomping woks by combining easoning and acing ino a hough-acion loop. The

LLM s easons abou he poblem and geneaes a plan o acion. I hen peoms he

acions in he plan and obseves he esuls. The LLM hen uses he obsevaions o updae

is easoning and geneae a new plan o acion. This pocess coninues unil he LLM

eaches a soluion o he poblem.

To see his in acion, you need o wie some code. In code Snippe 1 I am using he langchain

amewok o Pyhon, ogehe wih VerexAI (google-cloud-aiplatform) and the
google-search-results pip packages.

Prompt Engineering

February 2025 38

To run this sample you must create a (free) SerpAPI key from htps://sepapi.com/manage-

api-key and set an environment variable SERPAPI_API_KEY.

Nex le’s wie some Pyhon code, wih he ask o he LLM o gue ou: How many children

have a famous dad ha peroms in he band Meallica.

Python

from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import VertexAI

prompt = "How many kids do the band members of Metallica have?"

llm = VertexAI(temperature=0.1)
tools = load_tools(["serpapi"], llm=llm)

agent = initialize_agent(tools, llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run(prompt)

Snippe 1. Ceaing a ReAc Agen wih LangChain and VerexAI

Code Snippe 2 shows he esul. Noice ha ReAc makes a chain o ve seaches. In ac,

he LLM is scaping Google seach esuls o gue ou he band names. Then, i liss he

esuls as obsevaions and chains he hough o he nex seach.

Prompt Engineering

February 2025 39

> Entering new AgentExecutor chain...
Metallica has 4 members.
Action: Search
Action Input: How many kids does James Hetfield have?
Observation: three children
Thought: 1/4 Metallica band members have 3 children
Action: Search
Action Input: How many kids does Lars Ulrich have?
Observation: 3
Thought: 2/4 Metallica band members have 6 children
Action: Search
Action Input: How many kids does Kirk Hammett have?
Observation: Hammett has been married to his second wife Lani since 1998.
They have two sons, Angel (b. September 29, 2006) and Vincenzo (b. June
28, 2008).
Thought: 3/4 Metallica band members have 8 children
Action: Search
Action Input: How many kids does Robert Trujillo have?
Observation: 2
Thought: 4/4 Metallica band members have 10 children
Final Answer: 10

Snippe 2. Execuing ReAc Agen in he eminal

Code Snippe 2 gues ou ha he band Meallica has ou band membes. Then i seaches

each band membe o eques he oal o childen and add up he oal. Finally, i euns he

oal numbe o childen as he nal answe.

ReAc pomping in pacice equies undesanding ha you coninually have o esend he

previous prompts/responses (and do trimming of the extra generated content) as well as set

up he model wih appopiae examples/insucions. Please ee o he noebook14 hosted

in he GoogleCloudPlaom Gihub eposioy, which goes ino a bi moe deail showing he

acual LLM inpus and oupus wih a moe elaboae example.

Prompt Engineering

February 2025 40

Automatic Prompt Engineering

A his poin you migh ealize ha wiing a pomp can be complex. Wouldn’ i be nice o

auomae his (wie a pomp o wie pomps)? Well, hee’s a mehod: Auomaic Pomp

Engineeing (APE). This mehod15 not only alleviates the need for human input but also

enhances he model’s peomance in vaious asks.

You will pomp a model o geneae moe pomps. Evaluae hem, possibly ale he good

ones. And epea.

For example, you can use automatic prompt engineering that will help with training a chatbot

o a mechandise -shir webshop. We wan o gue ou all he vaious ways cusomes

could phase hei ode o buying a band mechandise -shir.

1. Wie he pomp which will geneae he oupu vaians. In his example, I am using

gemini-po o geneae 10 insucions. See Table 15:

Prompt Engineering

February 2025 41

Prompt We have a band merchandise t-shirt webshop, and to train a
chatbot we need various ways to order: "One Metallica t-shirt
size S". Generate 10 variants, with the same semantics but keep
the same meaning.

Output 1. I’d like o puchase a Meallica -shir in size small.

2. Can I ode a small-sized Meallica -shir?

3. I’d like o buy one Meallica -shir in small.

4. One Meallica shir, size small, please.

5. I wan one Meallica -shir in size small.

6. I’d like o place an ode o one Meallica -shir in small.

7. Small Meallica -shir, one please.

8. I’m looking o one Meallica -shir in small.

. Can you ge me one Meallica -shir in small?

10.One Meallica small -shir, please.

Table 15. Use an LLM o geneae pomps

2. Evaluate all of the instruction candidates by scoring the candidates based on a chosen

meic, Fo example, you can use. BLEU (Bilingual Evaluaion Undesudy) o ROUGE

(Recall-Oiened Undesudy o Gising Evaluaion).

3. Selec he insucion candidae wih he highes evaluaion scoe. This candidae will be

he nal pomp you can use in you sofwae applicaion o chabo. You can also weak

he selec pomp and evaluae again.

Prompt Engineering

February 2025 42

Code prompting

Gemini focuses primarily on text-based prompts, which also includes writing prompts for

euning code. Le’s go o he Verex AI Sudio and es hese pomps o look a some

coding examples.

Prompts for writing code

Gemini can also be a developer and help you with writing code in any programming language

o choice. As a develope his can help you speed up he pocess o wiing code.

Imagine a olde on you machine wih hundeds o les ha needs o be enamed.

Renaming each le would ake you a lo o ime. You know a litle Bash, and could wie

a scip o auomae his, bu ha may also ake awhile. So le’s wie a pomp. You can

write the prompt in the public consumer chatbot Gemini, or if you are more concerned

abou condenialiy, you can wie hese pomps wihin you Google Cloud accoun and

open Verex AI Sudio. The advanage o Verex AI Sudio is ha you can congue he

empeaue ec.

Prompt Engineering

February 2025 43

Name 1_bash_ename_les_in_olde

Goal Wie a pomp o wie code in Bash o ename les in a olde.

Model gemini-pro

Tempeaue 0.1 Token Limit 1024

Top-K N/A Top-P 1

Prompt Write a code snippet in Bash, which asks for a folder name.
Then it takes the contents of the folder and renames all the
files inside by prepending the name draft to the file name.

Output `̀ `bash
#!/bin/bash

Ask for the folder name
echo "Enter the folder name: "
read folder_name

Check if the folder exists
if [! -d "$folder_name"]; then
echo "Folder does not exist."
exit 1
fi

Get the list of files in the folder
files=("$folder_name"/*)

Rename each file by prepending "draft" to the file name
for file in "${files[@]}"; do
new_file_name="draft_$(basename "$file")"
mv "$file" "$new_file_name"
done

echo "Files renamed successfully."
`̀ `

Table 16. Using Gemini o pogam code

Tha seems like good code o me - i’s even documened! Howeve, since LLMs can’ eason,

and epea aining daa, i’s essenial o ead and es you code s.

The moment we are all waiting for, does it really work?

Prompt Engineering

February 2025 44

Le’s y i s wih a es olde wih only a ew les in i, which will need o be enamed om

lename.x o daf_lename.x.

1. Copy the output from Table 16 (without the `̀ `bash `̀ ` text wrapper), and paste it in a new

le called: “ename_files.sh”.

2. Open a eminal window and ype: . ename_files.sh. I will ask o ene a olde name, e.g.

test. and hi ene.

3. The scip seems o un ne. You will see he message: Files renamed successfully.

When you look ino he es olde, noice ha all he les wee peecly enamed o

daf_filename.txt.

I woked!

Prompts for explaining code

As a develope when you wok in eams you have o ead someone else’s code. Gemini can

help you wih his as well. Le’s ake he code oupu om Table 16, emove he commens

and ask he lage language model o explain wha’s happening, See Table 17:

Prompt Engineering

February 2025 45

Name 1_bash_explain_the_code

Goal Write a prompt to explain Bash code

Model gemini-pro

Tempeaue 0.1 Token Limit 1024

Top-K N/A Top-P 1

Prompt Explain to me the below Bash code:

`̀ `
#!/bin/bash

echo "Enter the folder name: "
read folder_name

if [! -d "$folder_name"]; then
echo "Folder does not exist."
exit 1
fi

files=("$folder_name"/*)

for file in "${files[@]}"; do
new_file_name="draft_$(basename "$file")"
mv "$file" "$new_file_name"
done

echo "Files renamed successfully."
`̀ `

Output This Bash scip peoms he ollowing asks:

1. **Use Inpu**:
- It prompts the user to enter a folder name using the `echo` and r̀ead`
commands. The eneed olde name is soed in he `olde_name` vaiable.

2. **Folde Exisence Check**:
- I checks i he olde wih he specied name exiss using he `[! -d
“$olde_name”]` condiion. I he olde does no exis, i displays an eo
message (“Folde does no exis.”) and exis he scip wih an exi code o 1.

Continues next page...

Prompt Engineering

February 2025 46

Output 3. **File Lising**:
- I liss all he les inside he specied olde using he `les=(“$olde_
name”/*)̀ command. This ceaes an aay called `les` conaining he pahs
o all he les in he olde.

4. **File Renaming**:
- I ieaes hough each le in he `les` aay using a `o̀ loop.
- Fo each le, i geneaes a new le name using he `new_le_
name=”daf_$(basename “$le”)” ` command. This new le name is ceaed
by pexing he oiginal le name wih he sing “daf_”.
- I hen enames he le using he `mv “$le” “$new_le_name”` command,
which moves he le o he new le name.

5. **Success Message**:
- Afe enaming all he les, i displays a success message (“Files enamed
successully.”) o indicae ha he enaming opeaion was successul

Table 17. A pomp o explaining code

Prompts for translating code

The bash code om Table 16 seems o wok ne. Howeve his scip could eally be eusable

when i would pomp me o le names, ideally i should wok as a sepaae applicaion wih

an UI. As a saring poin, Pyhon would be a bete language o a (web) applicaion han

Bash. LLMs can help wih anslaing code om one language o anohe. See he example in

Table 18:

Prompt Engineering

February 2025 47

Name 1_pyhon_ename_les

Goal Write a prompt to translate Bash code to Python

Model gemini-pro

Tempeaue 0.1 Token Limit 1024

Top-K N/A Top-P 1

Prompt Translate the below Bash code to a Python snippet.

`̀ `bash
#!/bin/bash

echo "Enter the folder name: "
read folder_name

if [! -d "$folder_name"]; then
echo "Folder does not exist."
exit 1
fi

files=("$folder_name"/*)

for file in "${files[@]}"; do
new_file_name="draft_$(basename "$file")"
mv "$file" "$new_file_name"
done

echo "Files renamed successfully."
`̀ `

Output `̀ `python
import os
import shutil

Get the folder name from the user
folder_name = input("Enter the folder name: ")

Check if the folder exists
if not os.path.isdir(folder_name):
print("Folder does not exist.")

exit(1)

Continues next page...

Prompt Engineering

February 2025 48

Output # Get a list of all files in the folder
files = os.listdir(folder_name)

Iterate over the files
for file in files:

Create a new file name with the prefix "draft_"
new_file_name = f"draft_{file}"

Move the file to the new name
shutil.move(os.path.join(folder_name, file),
os.path.join(folder_name, new_file_name))

Print a success message
print("Files renamed successfully.")
`̀ `

Table 18. A pomp o anslaing code om Bash o Pyhon

Read and eview he code. Copy he oupu om he pomp and pase i ino a new le:

file_ename.py. Tes he code by opening a Teminal window, and execue he ollowing

command python file_ename.py.

NOTE:When pomping o (Pyhon) code in he Language Sudio in Verex AI, you will have

o click on he ‘Makdown’ buton. Ohewise you will eceive plain ex which is missing he

pope indening o lines, which is imporan o unning Pyhon code.

Prompts for debugging and reviewing code

Le’s manually wie some edis o he code o Table 18. I should pomp he use o he

lename pex, and wie his pex in uppe case chaaces. See he example code in

Snippe *3, bu wha a bumme. I now euns Pyhon eos!

Prompt Engineering

February 2025 49

Python

import os
import shutil

folder_name = input("Enter the folder name: ")
prefix = input("Enter the string to prepend to the filename: ")
text = toUpperCase(prefix)

if not os.path.isdir(folder_name):
print("Folder does not exist.")
exit(1)

files = os.listdir(folder_name)

for file in files:
new_filename = f"{text}_{file}"

shutil.move(os.path.join(folder_name, file),
os.path.joi(folder_name, new_file_name))

print("Files renamed successfully.")

Snippe 3. A boken Pyhon scip

Doh! Tha looks like a bug:

The below Python code gives an error:

Traceback (most recent call last):
File “/Users/leeboonstra/Documents/test_folder/rename_files.py”, line 7,

in <module>
text = toUpperCase(prefix)

NameError: name ‘toUpperCase’ is not defined

Snippe 4. I boke he Pyhon code

Le’s see i we can ask he lage language model o debug and eview code. Have a look ino

Table 1:

Prompt Engineering

February 2025 50

Name 1_python_debug_code

Goal Wie a pomp o debug and eview Pyhon code.

Model gemini-pro

Tempeaue 0.1 Token Limit 1024

Top-K N/A Top-P 1

Prompt The below Python code gives an error:

Traceback (most recent call last):
File "/

Users/leeboonstra/Documents/test_folder/rename_files.py", line
7, in <module>

text = toUpperCase(prefix)
NameError: name 'toUpperCase' is not defined

Debug what's wrong and explain how I can improve the code.

`̀ `python
import os
import shutil

Get the folder name from the user

folder_name = input("Enter the folder name: ")
prefix = input("Enter the string to prepend to the filename: ")
text = toUpperCase(prefix)

Check if the folder exists
if not os.path.isdir(folder_name):

print("Folder does not exist.")
exit(1)

Get a list of all files in the folder
files = os.listdir(folder_name)

Iterate over the files
for file in files:

Continues next page...

Prompt Engineering

February 2025 51

Prompt # Create a new file name with the prefix "draft_"
new_filename = f"{text}_{file}"

Move the file to the new name
shutil.move(os.path.join(folder_name, file),
os.path.join(folder_name, new_file_name))

Print a success message
print("Files renamed successfully.")
`̀ `

Output The code calls he `oUppeCase` uncion o conver p̀ex` o uppecase, bu
ha uncion is no dened. To x his issue, you can use he `uppe()̀ mehod o
he sing class which convers a given sing ino uppecase. The modied code
is shown below:

`̀ `python
import os
import shutil

Get the folder name from the user
folder_name = input("Enter the folder name: ")
prefix = input("Enter the string to prepend to the filename: ")
text = prefix.upper()

Check if the folder exists
if not os.path.isdir(folder_name):

print("Folder does not exist.")
exit(1)

Get a list of all files in the folder
files = os.listdir(folder_name)

Iterate over the files
for file in files:

Create a new file name with the prefix "draft_"
new_filename = f"{text}_{file}"

Move the file to the new name
shutil.move(os.path.join(folder_name, file),

Continues next page...

Prompt Engineering

February 2025 52

Output os.path.join(folder_name, new_filename))

Print a success message
print("Files renamed successfully.")
`̀ `

Addiionally, hee ae a ew ohe impovemens ha can be made o he code:

1. The le exension o he new lenames is no kep. I’s bete o exac he
exension om he oiginal lename and append i o he new lename.

2. The code assumes ha hee ae no spaces in he olde name. Howeve,
it is a good practice to handle spaces gracefully by replacing them with
undescoes o hyphens.

3. Using the `f` string syntax for string interpolation is more readable and
concise han he adiional +̀̀ opeao.

4. The code doesn’ handle eos ha migh occu duing he enaming pocess.
I would be bete o wap he `shuil.move` call in a `y...excep` block o
cach any poenial eos.

Hee is he impoved code wih hese suggesions:

`̀ `python
import os
import shutil
Get the folder name from the user
folder_name = input("Enter the folder name: ")
prefix = input("Enter the string to prepend to the filename: ")
Check if the folder exists
if not os.path.isdir(folder_name):

print("Folder does not exist.")
exit(1)

Get a list of all files in the folder
files = os.listdir(folder_name)

Iterate over the files
for file in files:

Continues next page...

Prompt Engineering

February 2025 53

Output # Get the file extension
ext = os.path.splitext(file)[1]

Create a new file name with the prefix and the file extension
new_filename = f"{prefix}_{os.path.splitext(file)[0]}{ext}"

Build the full paths for the original and new files
old_path = os.path.join(folder_name, file)
new_path = os.path.join(folder_name, new_filename)

Try to move the file
try:

shutil.move(old_path, new_path)

except Exception as e:
print(f"An error occurred while moving the file

{file}: {e}")

Print a success message
print("Files renamed successfully.")
`̀ `

These impovemens make he code moe obus and exible while also making
i easie o ead and undesand... (The esponse was uncaed because
i has eached he oken limi. Ty o incease he oken limi i you need a
longe esponse.)

Table 19. A pomp o debugging and eviewing Pyhon code

Tha’s gea. No only did i ell me how o solve he poblem, i also gued ou ha my code

had moe bugs and how o solve hem, oo. The las par o he pomp gave suggesions o

impove he code in geneal.

Prompt Engineering

February 2025 54

What about multimodal prompting?

Pomping o code sill uses he same egula lage language model. Mulimodal pomping

is a sepaae concen, i ees o a echnique whee you use muliple inpu omas o guide

a lage language model, insead o jus elying on ex. This can include combinaions o ex,

images, audio, code, o even ohe omas, depending on he model’s capabiliies and he

ask a hand.

Best Practices
Finding he igh pomp equies inkeing. Language Sudio in Verex AI is a peec place o

play aound wih you pomps, wih he abiliy o es agains he vaious models.

Use he ollowing bes pacices o become a po in pomp engineeing.

Provide examples

The mos imporan bes pacice is o povide (one sho / ew sho) examples wihin a

pomp. This is highly eecive because i acs as a poweul eaching ool. These examples

showcase desired outputs or similar responses, allowing the model to learn from them

and ailo is own geneaion accodingly. I’s like giving he model a eeence poin o

age o aim o, impoving he accuacy, syle, and one o is esponse o bete mach

you expecaions.

Prompt Engineering

February 2025 55

Design with simplicity

Pomps should be concise, clea, and easy o undesand o boh you and he model. As a

ule o humb, i i’s aleady conusing o you i will likely be also conusing o he model. Ty

no o use complex language and don’ povide unnecessay inomaion.

Examples:

BEFORE:

I am visiting New York right now, and I'd like to hear more about great
locations. I am with two 3 year old kids. Where should we go during
our vacation?

AFTER REWRITE:

Act as a travel guide for tourists. Describe great places to visit in
New York Manhattan with a 3 year old.

Ty using vebs ha descibe he acion. Hee’s a se o examples:

Act, Analyze, Categoize, Classiy, Contast, Compae, Ceate, Descibe, Define,

Evaluate, Extract, Find, Generate, Identify, List, Measure, Organize, Parse, Pick,

Pedict, Povide, Rank, Recommend, Retun, Retieve, Rewite, Select, Show, Sor,

Summarize, Translate, Write.

Prompt Engineering

February 2025 56

Be specific abou he oupu

Be specic abou he desied oupu. A concise insucion migh no guide he LLM enough

o could be oo geneic. Poviding specic deails in he pomp (hough sysem o conex

pomping) can help he model o ocus on wha’s elevan, impoving he oveall accuacy.

Examples:

DO:

Generate a 3 paragraph blog post about the top 5 video game consoles.
The blog post should be informative and engaging, and it should be
written in a conversational style.

DO NOT:

Generate a blog post about video game consoles.

Use Instructions over Constraints

Insucions and consains ae used in pomping o guide he oupu o a LLM.

• An instruction provides explicit instructions on the desired format, style, or content of the

esponse. I guides he model on wha he model should do o poduce.

• A constraint is a se o limiaions o boundaies on he esponse. I limis wha he model

should no do o avoid.

Prompt Engineering

February 2025 57

Growing research suggests that focusing on positive instructions in prompting can be more

eecive han elying heavily on consains. This appoach aligns wih how humans pee

posiive insucions ove liss o wha no o do.

Instructions directly communicate the desired outcome, whereas constraints might leave the

model guessing abou wha is allowed. I gives exibiliy and encouages ceaiviy wihin he

dened boundaies, while consains can limi he model’s poenial. Also a lis o consains

can clash wih each ohe.

Consains ae sill valuable bu in cerain siuaions. To peven he model om geneaing

hamul o biased conen o when a sic oupu oma o syle is needed.

I possible, use posiive insucions: insead o elling he model wha no o do, ell i wha o

do insead. This can avoid conusion and impove he accuacy o he oupu.

DO:

Generate a 1 paragraph blog post about the top 5 video game consoles.
Only discuss the console, the company who made it, the year, and total
sales.

DO NOT:

Generate a 1 paragraph blog post about the top 5 video game consoles.
Do not list video game names.

As a bes pacice, sar by pioiizing insucions, clealy saing wha you wan he model

o do and only use consains when necessay o saey, claiy o specic equiemens.

Expeimen and ieae o es dieen combinaions o insucions and consains o nd

wha woks bes o you specic asks, and documen hese.

Prompt Engineering

February 2025 58

Control the max token length

To control the length of a generated LLM response, you can either set a max token limit in the

conguaion o explicily eques a specic lengh in you pomp. Fo example:

"Explain quantum physics in a tweet length message."

Use variables in prompts

To reuse prompts and make it more dynamic use variables in the prompt, which can be

changed o dieen inpus. E.g. as shown in Table 20, a pomp which gives acs abou a

ciy. Insead o hadcoding he ciy name in he pomp, use a vaiable. Vaiables can save

you ime and eor by allowing you o avoid epeaing yousel. I you need o use he same

piece of information in multiple prompts, you can store it in a variable and then reference

ha vaiable in each pomp. This makes a lo o sense when inegaing pomps ino you

own applicaions.

Prompt VARIABLES
{city} = "Amsterdam"

PROMPT
You are a travel guide. Tell me a fact about the city: {city}

Output Amsedam is a beauiul ciy ull o canals, bidges, and naow sees. I’s a
gea place o visi o is ich hisoy, culue, and nighlie.

Table 20. Using vaiables in pomps

Prompt Engineering

February 2025 59

Experiment with input formats and writing styles

Dieen models, model conguaions, pomp omas, wod choices, and submis can yield

dieen esuls. Theeoe, i’s imporan o expeimen wih pomp atibues like he syle,

he wod choice, and he ype pomp (zeo sho, ew sho, sysem pomp).

For example a prompt with the goal to generate text about the revolutionary video game

console Sega Dreamcast, can be formulated as a question, a statement or an instruction,

esuling in dieen oupus:

• Question:What was the Sega Dreamcast and why was it such a revolutionary console?

• Statement: The Sega Dreamcast was a sixth-generation video game console released by

Sega in 1. I...

• Instruction:Write a single paragraph that describes the Sega Dreamcast console and

explains why i was so evoluionay.

For few-sho promping wih classificaion asks, mix up
the classes

Geneally speaking, he ode o you ew-shos examples should no mate much. Howeve,

when doing classicaion asks, make sue you mix up he possible esponse classes in he

ew sho examples. This is because you migh ohewise be oveiting o he specic ode o

he examples. By mixing up he possible esponse classes, you can ensue ha he model is

learning to identify the key features of each class, rather than simply memorizing the order of

he examples. This will lead o moe obus and genealizable peomance on unseen daa.

Prompt Engineering

February 2025 60

A good ule o humb is o sar wih 6 ew sho examples and sar esing he accuacy

om hee.

Adapt to model updates

I’s imporan o you o say on op o model achiecue changes, added daa, and

capabiliies. Ty ou newe model vesions and adjus you pomps o bete leveage new

model eaues. Tools like Verex AI Sudio ae gea o soe, es, and documen he vaious

vesions o you pomp.

Experiment with output formats

Besides he pomp inpu oma, conside expeimening wih he oupu oma. Fo non-

creative tasks like extracting, selecting, parsing, ordering, ranking, or categorizing data try

having you oupu euned in a sucued oma like JSON o XML.

Thee ae some benes in euning JSON objecs om a pomp ha exacs daa. In

a eal-wold applicaion I don’ need o manually ceae his JSON oma, I can aleady

eun he daa in a sored ode (vey handy when woking wih daeime objecs), bu mos

imporanly, by pomping o a JSON oma i oces he model o ceae a sucue and

limi hallucinaions.

In summay, benes o using JSON o you oupu:

• Returns always in the same style

• Focus on the data you want to receive

Prompt Engineering

February 2025 61

• Less chance for hallucinations

• Make it relationship aware

• You get data types

• You can sor i

Table 4 in the few-shot prompting section shows an example on how to return

sucued oupu.

JSON Repair

While euning daa in JSON oma oes numeous advanages, i's no wihou is

dawbacks. The sucued naue o JSON, while benecial o pasing and use in

applicaions, equies signicanly moe okens han plain ex, leading o inceased

pocessing ime and highe coss. Furhemoe, JSON's vebosiy can easily consume he

entire output window, becoming especially problematic when the generation is abruptly cut

o due o oken limis. This uncaion ofen esuls in invalid JSON, missing cucial closing

baces o backes, endeing he oupu unusable. Forunaely, ools like he json-repair
libay (available on PyPI) can be invaluable in hese siuaions. This libay inelligenly

atemps o auomaically x incomplee o malomed JSON objecs, making i a cucial

ally when working with LLM-generated JSON, especially when dealing with potential

uncaion issues.

Prompt Engineering

February 2025 62

Working with Schemas

Using sucued JSON as an oupu is a gea soluion, as we've seen muliple imes in his

pape. Bu wha abou input? While JSON is excellent for structuring the output the LLM

generates, it can also be incredibly useful for structuring the input you povide. This is whee

JSON Schemas come ino play. A JSON Schema denes he expeced sucue and daa

ypes o you JSON inpu. By poviding a schema, you give he LLM a clea bluepin o he

data it should expect, helping it focus its atenion on the relevant information and reducing

he isk o misinepeing he inpu. Furhemoe, schemas can help esablish elaionships

beween dieen pieces o daa and even make he LLM "ime-awae" by including dae o

imesamp elds wih specic omas.

Hee's a simple example:

Le's say you wan o use an LLM o geneae descipions o poducs in an e-commece

caalog. Insead o jus poviding a ee-om ex descipion o he poduc, you can use a

JSON schema o dene he poduc's atibues:

Snippe 5. Definiion o he sucued oupu schema

{
"type": "object",
"properties": {

"name": { "type": "string", "description": "Product name" },
"category": { "type": "string", "description": "Product category" },
"price": { "type": "number", "format": "float", "description": "Product

price" },
"features": {

"type": "array",
"items": { "type": "string" },
"description": "Key features of the product"

},
"release_date": { "type": "string", "format": "date", "description":

"Date the product was released"}
},

Prompt Engineering

February 2025 63

Then, you can provide the actual product data as a JSON object that conforms to

his schema:

Snippe 6. Sucued oupu om he LLM

By preprocessing your data and instead of providing full documents only providing both the

schema and he daa, you give he LLM a clea undesanding o he poduc's atibues,

including its release date, making it much more likely to generate an accurate and relevant

descipion. This sucued inpu appoach, guiding he LLM's atenion o he elevan elds,

is especially valuable when working with large volumes of data or when integrating LLMs into

complex applicaions.

Experiment together with other prompt engineers

If you are in a situation where you have to try to come up with a good prompt, you might

wan o nd muliple people o make an atemp. When eveyone ollows he bes pacices

(as lised in his chape) you ae going o see a vaiance in peomance beween all he

dieen pomp atemps.

{
"name": "Wireless Headphones",
"category": "Electronics",
"price": 99.99,
"features": ["Noise cancellation", "Bluetooth 5.0", "20-hour battery life"],
"release_date": "2023-10-27"

}

Prompt Engineering

February 2025 64

CoT Best practices

Fo CoT pomping, puting he answe afe he easoning is equied because he

generation of the reasoning changes the tokens that the model gets when it predicts the

nal answe.

Wih CoT and sel-consisency you need o be able o exac he nal answe om you

pomp, sepaaed om he easoning.

Fo CoT pomping, se he empeaue o 0.

Chain of thought prompting is based on greedy decoding, predicting the next word in a

sequence based on he highes pobabiliy assigned by he language model. Geneally

speaking, when using easoning, o come up wih he nal answe, hee’s likely one single

coec answe. Theeoe he empeaue should always se o 0.

Documen he various promp atemps

The las ip was menioned beoe in his chape, bu we can’ sess enough how imporan

i is: documen you pomp atemps in ull deail so you can lean ove ime wha wen well

and wha did no.

Pomp oupus can die acoss models, acoss sampling setings, and even acoss dieen

vesions o he same model. Moeove, even acoss idenical pomps o he same model,

small dieences in oupu senence omating and wod choice can occu. (Fo example, as

mentioned previously, if two tokens have the same predicted probability, ties may be broken

andomly. This can hen impac subsequen pediced okens.).

Prompt Engineering

February 2025 65

We ecommend ceaing a Google Shee wih Table 21 as a emplae. The advanages o

this approach are that you have a complete record when you inevitably have to revisit your

pomping wok–eihe o pick i up in he uue (you’d be supised how much you can

oge afe jus a shor beak), o es pomp peomance on dieen vesions o a model,

and o help debug uue eos.

Beyond he elds in his able, i’s also helpul o ack he vesion o he pomp (ieaion),

a eld o capue i he esul was OK/NOT OK/SOMETIMES OK, and a eld o capue

eedback. I you’e lucky enough o be using Verex AI Sudio, save you pomps (using he

same name and version as listed in your documentation) and track the hyperlink to the saved

pomp in he able. This way, you’e always one click away om e-unning you pomps.

When working on a retrieval augmented generation system, you should also capture the

specic aspecs o he RAG sysem ha impac wha conen was insered ino he pomp,

including he quey, chunk setings, chunk oupu, and ohe inomaion.

Once you eel he pomp is close o peec, ake i o you pojec codebase. And in he

codebase, save pomps in a sepaae le om code, so i’s easie o mainain. Finally, ideally

you pomps ae par o an opeaionalized sysem, and as a pomp enginee you should

rely on automated tests and evaluation procedures to understand how well your prompt

genealizes o a ask.

Pomp engineeing is an ieaive pocess. Caf and es dieen pomps, analyze,

and documen he esuls. Rene you pomp based on he model’s peomance. Keep

expeimening unil you achieve he desied oupu. When you change a model o model

conguaion, go back and keep expeimening wih he peviously used pomps.

Prompt Engineering

February 2025 66

Name [name and version of your prompt]

Goal [One senence explanaion o he goal o his atemp]

Model [name and version of the used model]

Tempeaue [value between 0 - 1] Token Limit [number]

Top-K [number] Top-P [number]

Prompt [Write all the full prompt]

Output [Write out the output or multiple outputs]

Table 21. A emplae o documening pomps

Summary
This whiepape discusses pomp engineeing. We leaned vaious pomping echniques,

such as:

• Zero prompting

• Few shot prompting

• System prompting

• Role prompting

• Contextual prompting

• Step-back prompting

• Chain of thought

• Self consistency

• Tree of thoughts

Prompt Engineering

February 2025 67

• ReAct

We even looked ino ways how you can auomae you pomps.

The whitepaper then discusses the challenges of gen AI like the problems that can happen

when you pomps ae insucien. We closed wih bes pacices on how o become a bete

pomp enginee.

Prompt Engineering

February 2025 68

Endnotes

1. Google, 2023, Gemini by Google. Available a: htps://gemini.google.com.

2. Google, 2024, Gemini o Google Wokspace Pomp Guide. Available a:
htps://inhecloud.wihgoogle.com/gemini-o-google-wokspace-pomp-guide/dl-cd.hml.

3. Google Cloud, 2023, Inoducion o Pomping. Available a:
htps://cloud.google.com/verex-ai/geneaive-ai/docs/lean/pomps/inoducion-pomp-design.

4. Google Cloud, 2023, Tex Model Reques Body: Top-P & op-K sampling mehods. Available a:
htps://cloud.google.com/verex-ai/docs/geneaive-ai/model-eeence/ex#eques_body.

5. Wei, J., e al., 2023, Zeo Sho - Fine Tuned language models ae zeo sho leanes. Available a:
htps://axiv.og/pd/2109.01652.pd.

6. Google Cloud, 2023, Google Cloud Model Gaden. Available a: htps://cloud.google.com/model-gaden.

7. Bown, T., e al., 2023, Few Sho - Language Models ae Few Sho leanes. Available a:
htps://axiv.og/pd/2005.14165.pd.

8. Zheng, L., e al., 2023, Take a Sep Back: Evoking Reasoning via Absacion in Lage Language Models.
Available a: htps://openeview.ne/pd?id=3bq3jsvcQ1

. Wei, J., e al., 2023, Chain o Though Pomping. Available a: htps://axiv.og/pd/2201.11903.pd.

10. Google Cloud Plaom, 2023, Chain o Though and Reac. Available a: htps://gihub.com/
GoogleCloudPlaom/geneaive-ai/blob/main/language/pomps/examples/chain_o_hough_eac.ipynb.

11. Wang, X., e al., 2023, Sel Consisency Impoves Chain o Though easoning in language models.
Available a: htps://axiv.og/pd/2203.11171.pd.

12. Yao, S., e al., 2023, Tee o Thoughs: Delibeae Poblem Solving wih Lage Language Models.
Available a: htps://axiv.og/pd/2305.10601.pd.

13. Yao, S., e al., 2023, ReAc: Synegizing Reasoning and Acing in Language Models. Available a:
htps://axiv.og/pd/2210.03629.pd.

14. Google Cloud Plaom, 2023, Advance Pomping: Chain o Though and Reac. Available a:
htps://gihub.com/GoogleCloudPlaom/applied-ai-engineeing-samples/blob/main/genai-
on-verex-ai/advanced_pomping_aining/co_eac.ipynb.

15. Zhou, C., e al., 2023, Auomaic Pomp Engineeing - Lage Language Models ae Human-Level Pomp
Enginees. Available a: htps://axiv.og/pd/2211.01910.pd.

